jijzepttools.blackbox_optimization.problem#

Classes#

Functions#

CategoricalVar(name, categories)

Module Contents#

CategoricalVar(name, categories)#
class BlackboxProblem#
name: str#
description: str#
sense: jijmodeling.ProblemSense#
add_IntegerVar(name: str, lower_bound, upper_bound, shape: tuple | None = None, step: int = 1, description: str | None = None) jijmodeling.IntegerVar#
add_CategoricalVar(name: str, categories: list[str | int], description: str | None = None) jijmodeling.BinaryVar#
add_ContinuousVar(name: str, lower_bound: float, upper_bound: float, shape: tuple | None = None, description: str | None = None) jijmodeling.ContinuousVar#
add_BinaryVar(name: str, shape: tuple | None = None, description: str | None = None) jijmodeling.BinaryVar#
decision_variables_table() pandas.DataFrame#
random_candidates(num_samples: int = 1, interpreter: jijmodeling.Interpreter | None = None) list[dict]#
create_instance(instance_data: dict) ommx.v1.Instance#
encode_to_array(dataset: pandas.DataFrame, deci_vars: list[ommx.v1.DecisionVariable], objectives: list[str]) tuple[numpy.ndarray, numpy.ndarray]#
encode_dict_data(dict_deci_values: dict | pandas.Series, deci_vars: list[ommx.v1.DecisionVariable]) list#
decode_from_solution(solution: ommx.v1.Solution) dict#