jijzepttools.blackbox_optimization.sparse_bayesian_linear_reg#
Classes#
Functions#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Module Contents#
- class Trace#
- coef: numpy.ndarray#
- bias: numpy.ndarray#
- lambda2: numpy.ndarray#
- sigma2: float#
- tau2: float#
- nu: numpy.ndarray#
- xi: float#
- property num_samples#
- class SparseBayesianLinearRegression(random_seed: int | None = None)#
- rs#
- fit(x: numpy.ndarray, y: numpy.ndarray, draws: int = 10, tune: int = 100)#
- efficient_multivariate_normal(phi: numpy.ndarray, d: numpy.ndarray, alpha: numpy.ndarray)#
- sample_from_inv_gamma(shape, scale)#
- sample_theta(x, y, lamb2, tau2, sigma2)#
- sample_sigma2(x, y, theta, lamb2, tau2)#
- sample_lamb2(theta, sigma2, tau2, nu)#
- sample_tau2(theta, sigma2, lamb2, xi)#
- sample_nu(lamb2)#
- sample_xi(tau2)#
- horseshoe_gibbs_sampling(x, y, theta, sigma2, lamb2, tau2, nu, xi, max_iter)#
- remove_duplicates_and_average(x, y, logger=None)#
- get_nonzero_column_indices(x, logger=None)#