jijzepttools.modeling.generate.expression#
Functions#
Generate dual variable placeholder from constraint with the shape consistent to the constraint |
|
Generate dual variable shape from constraint |
|
Generate sparse placeholder |
Module Contents#
- generate_dual_variable_placeholder(variable_name: str, constraint: jijmodeling.Constraint) jijmodeling.Placeholder #
Generate dual variable placeholder from constraint with the shape consistent to the constraint
- Parameters:
constraint (jm.Constraint) – constraint
- Returns:
dual variable placeholder
- Return type:
jm.Placeholder
- generate_dual_variable_shape(constraint: jijmodeling.Constraint) Tuple[jijzepttools.modeling.utils.type.Expr, Ellipsis] #
Generate dual variable shape from constraint
- Parameters:
constraint (jm.Constraint) – constraint
- Returns:
dual variable shape
- Return type:
Tuple[Expr, …]
- generate_sparse_placeholder(expr: jijmodeling.Subscript, nnz_prefix: str, ind_prefix: str, coord_prefix: str, data_prefix: str) jijzepttools.modeling.utils.type.Expr #
Generate sparse placeholder This function generates jm.Sum Expr which is equivalent to the original expression. Note that the following instnace_data will additionally be needed (below is an exapmle of A[i, j, k]): - nnzA: number of non-zero elements of A - coordA0: coordinate of non-zero elements of A in the first dimension - coordA1: coordinate of non-zero elements of A in the second dimension - coordA2: coordinate of non-zero elements of A in the third dimension - … - dataA: data of non-zero elements of A
- Parameters:
expr (Expr) – expression
nnz_prefix (str) – prefix of nnz
ind_prefix (str) – prefix of ind
coord_prefix (str) – prefix of coord
data_prefix (str) – prefix of data
- Returns:
jm.Sum Expr which is equivalent to the original expression
- Return type:
Expr