V0
Experiment
¶
Manage and track mathematical optimization experiments efficiently.
This class is designed to simplify the process of managing and analyzing data from mathematical optimization experiments. It abstracts away the complexities associated with data logging, storage, and retrieval, making it easier to focus on experiment design and result interpretation. Users are encouraged to utilize the logging functions provided to capture comprehensive details about their experiments, thereby enhancing the reproducibility and accessibility of their experimental work.
Args¶
name : str, optional The unique name of the experiment, automatically generated if not provided, to identify and differentiate it from others. savedir : str or pathlib.Path, optional The directory path for saving experiment data, including logs, solver configurations, parameters, and results. If not specified, a default directory is used.
Examples¶
Basic usage with manual parameter and result logging:
import minto exp = minto.v0.Experiment(name="trial_01") x = 2 y = x ** 2 with exp.run(): ... exp.log_parameter("x", x) ... exp.log_result("y", y) exp.table() experiment_name run_id x y 0 trial_01 0 2 4
Logging in iterative processes:
exp = minto.v0.Experiment(name="trial_02") for x in range(3): ... y = x ** 2 ... with exp.run(): ... exp.log_parameter("x", x) ... exp.log_result("y", y) exp.table() experiment_name run_id x y 0 trial_02 0 0 0 1 trial_02 1 1 1 2 trial_02 2 2 4
Integrating with optimization solvers and logging complex objects such as problems and samplesets:
import jijzept as jz import jijmodeling as jm problem = jm.Problem("test") x = jm.BinaryVar("x", shape=(3,)) problem += x[:].sum() problem += jm.Constraint("onehot", x[:].sum() == 1) sampler = jz.JijSASampler(config="config.toml") sampler_args = {"search": True, "num_search": 10} sampleset = sampler.sample_model(problem, {}, **sampler_args) exp = minto.v0.Experiment("trial_03") with exp.run(): ... exp.log_parameter("problem", problem) ... exp.log_parameters(sampler_args) ... exp.log_solver("solver", sampler.sample_model) ... exp.log_result("sampleset", sampleset) exp.table() Output is a DataFrame with experiment results, including solver and sampleset details.
Saving experiment data for future reference and reproducibility:
exp.save()
Source code in minto/v0/experiment/experiment.py
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 |
|
log_parameter(name, parameter)
¶
Log a single parameter used in the experiment.
Parameters¶
name : str The name assigned to the parameter for identification. parameter : Any The value of the parameter to be logged.
Source code in minto/v0/experiment/experiment.py
log_parameters(parameters)
¶
Logs multiple parameters at once.
Parameters¶
parameters : dict[str, Any] A dictionary where keys are parameter names and values are the parameter values to be logged.
Source code in minto/v0/experiment/experiment.py
log_result(name, result)
¶
Log a single result from the experiment.
Parameters¶
name : str The name assigned to the result for identification. result : Any The data or outcome to be logged as a result.
Source code in minto/v0/experiment/experiment.py
log_results(results)
¶
Logs multiple results at once.
Parameters¶
results : dict[str, Any] A dictionary where keys are result names and values are the data or outcomes to be logged.
Source code in minto/v0/experiment/experiment.py
log_solver(name, solver)
¶
Log data about the solver used in the experiment.
Parameters¶
name : str The name assigned to the solver for identification. solver : Callable[..., Any] The solver object to be logged.
Source code in minto/v0/experiment/experiment.py
log_solvers(solvers)
¶
Logs multiple solvers at once.
Parameters¶
solvers : dict[str, Callable[..., Any]] A dictionary where keys are solver names and values are the solver objects.
Source code in minto/v0/experiment/experiment.py
run()
¶
Start the experiment and create a unique ID. This method updates the internal database of the experiment, creating a new record that records the experiment data. It creates an environment for recording parameters, solvers, and results.
Returns¶
Experiment Returns the Experiment instance.
Source code in minto/v0/experiment/experiment.py
save()
¶
Writes out all log data for parameters, solvers, and results. The data is saved under "savedir / experiment.name" directory.
table(key=None, enable_sampleset_expansion=True)
¶
Compiled the logged data and returned as a pandas DataFrame.
Args¶
key : {'solver', 'parameter', 'result', None}, optional Specifies which part of the experiment data to return. If None, merges all available data into a single DataFrame. enable_sampleset_expansion : bool, default True Enables the expansion of SampleSet objects into tabular form, if present within the results data.
Returns¶
DataFrame If no key is specified, a merged DataFrame of the entire experiment, or a partial DataFrame specified by the key.
Source code in minto/v0/experiment/experiment.py
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
|
SchemaBasedTable
¶
Source code in minto/v0/table/table.py
empty()
¶
insert(record)
¶
Insert a new record.
Args¶
record : dict[str, Any] | Record | Series[Any] | list[Any] | tuple[Any, ...] The record to be appended.