1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
mod builtins;
mod collections;
mod pyo3;
#[cfg(feature = "numpy")]
mod numpy;
use maplit::hashset;
use std::{collections::HashSet, fmt, ops};
#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord, Default, Hash)]
pub enum ModuleRef {
Named(String),
/// Default module that PyO3 creates.
///
/// - For pure Rust project, the default module name is the crate name specified in `Cargo.toml`
/// or `project.name` specified in `pyproject.toml`
/// - For mixed Rust/Python project, the default module name is `tool.maturin.module-name` specified in `pyproject.toml`
///
/// Because the default module name cannot be known at compile time, it will be resolved at the time of the stub file generation.
/// This is a placeholder for the default module name.
#[default]
Default,
}
impl ModuleRef {
pub fn get(&self) -> Option<&str> {
match self {
Self::Named(name) => Some(name),
Self::Default => None,
}
}
}
impl From<&str> for ModuleRef {
fn from(s: &str) -> Self {
Self::Named(s.to_string())
}
}
/// Type information for creating Python stub files annotated by [PyStubType] trait.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct TypeInfo {
/// The Python type name.
pub name: String,
/// Python modules must be imported in the stub file.
///
/// For example, when `name` is `typing.Sequence[int]`, `import` should contain `typing`.
/// This makes it possible to use user-defined types in the stub file.
pub import: HashSet<ModuleRef>,
}
impl fmt::Display for TypeInfo {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", self.name)
}
}
impl TypeInfo {
pub fn none() -> Self {
Self {
name: "None".to_string(),
import: HashSet::new(),
}
}
pub fn any() -> Self {
Self {
name: "typing.Any".to_string(),
import: hashset! { "typing".into() },
}
}
pub fn builtin(name: &str) -> Self {
Self {
name: name.to_string(),
import: HashSet::new(),
}
}
pub fn with_module(name: &str, module: ModuleRef) -> Self {
let mut import = HashSet::new();
import.insert(module);
Self {
name: name.to_string(),
import,
}
}
}
impl ops::BitOr for TypeInfo {
type Output = Self;
fn bitor(mut self, rhs: Self) -> Self {
self.import.extend(rhs.import);
Self {
name: format!("{} | {}", self.name, rhs.name),
import: self.import,
}
}
}
/// Implement [PyStubType]
///
/// ```rust
/// use pyo3::*;
/// use pyo3_stub_gen::{impl_stub_type, derive::*};
///
/// #[gen_stub_pyclass]
/// #[pyclass]
/// struct A;
///
/// #[gen_stub_pyclass]
/// #[pyclass]
/// struct B;
///
/// enum E {
/// A(A),
/// B(B),
/// }
/// impl_stub_type!(E = A | B);
///
/// struct X(A);
/// impl_stub_type!(X = A);
///
/// struct Y {
/// a: A,
/// b: B,
/// }
/// impl_stub_type!(Y = (A, B));
/// ```
#[macro_export]
macro_rules! impl_stub_type {
($ty: ty = $($base:ty)|+) => {
impl ::pyo3_stub_gen::PyStubType for $ty {
fn type_output() -> ::pyo3_stub_gen::TypeInfo {
$(<$base>::type_output()) | *
}
fn type_input() -> ::pyo3_stub_gen::TypeInfo {
$(<$base>::type_input()) | *
}
}
};
($ty:ty = $base:ty) => {
impl ::pyo3_stub_gen::PyStubType for $ty {
fn type_output() -> ::pyo3_stub_gen::TypeInfo {
<$base>::type_output()
}
fn type_input() -> ::pyo3_stub_gen::TypeInfo {
<$base>::type_input()
}
}
};
}
/// Annotate Rust types with Python type information.
pub trait PyStubType {
/// The type to be used in the output signature, i.e. return type of the Python function or methods.
fn type_output() -> TypeInfo;
/// The type to be used in the input signature, i.e. the arguments of the Python function or methods.
///
/// This defaults to the output type, but can be overridden for types that are not valid input types.
/// For example, `Vec::<T>::type_output` returns `list[T]` while `Vec::<T>::type_input` returns `typing.Sequence[T]`.
fn type_input() -> TypeInfo {
Self::type_output()
}
}
#[cfg(test)]
mod test {
use super::*;
use maplit::hashset;
use std::collections::HashMap;
#[test]
fn test() {
assert_eq!(bool::type_input().name, "bool");
assert!(bool::type_input().import.is_empty());
assert_eq!(<&str>::type_input().name, "str");
assert!(<&str>::type_input().import.is_empty());
assert_eq!(Vec::<u32>::type_input().name, "typing.Sequence[int]");
assert_eq!(
Vec::<u32>::type_input().import,
hashset! { "typing".into() }
);
assert_eq!(Vec::<u32>::type_output().name, "list[int]");
assert!(Vec::<u32>::type_output().import.is_empty());
assert_eq!(
HashMap::<u32, String>::type_input().name,
"typing.Mapping[int, str]"
);
assert_eq!(
HashMap::<u32, String>::type_input().import,
hashset! { "typing".into() }
);
assert_eq!(HashMap::<u32, String>::type_output().name, "dict[int, str]");
assert!(HashMap::<u32, String>::type_output().import.is_empty());
assert_eq!(
HashMap::<u32, Vec<u32>>::type_input().name,
"typing.Mapping[int, typing.Sequence[int]]"
);
assert_eq!(
HashMap::<u32, Vec<u32>>::type_input().import,
hashset! { "typing".into() }
);
assert_eq!(
HashMap::<u32, Vec<u32>>::type_output().name,
"dict[int, list[int]]"
);
assert!(HashMap::<u32, Vec<u32>>::type_output().import.is_empty());
}
}