|
openjij
Framework for the Ising model and QUBO.
|
This is the complete list of members for openjij.sampler.sa_sampler.SASampler, including all inherited members.
| __init__(self) | openjij.sampler.sa_sampler.SASampler | |
| _algorithm | openjij.sampler.sa_sampler.SASampler | protected |
| _base_integer_sampler(self, dict[tuple, float] J, dict[Any, tuple[int, int]] bound_list, bool include_higher_order, int num_sweeps=1000, int num_reads=1, int num_threads=1, Optional[float] beta_min=None, Optional[float] beta_max=None, str updater="OPT_METROPOLIS", str random_number_engine="XORSHIFT", Optional[int] seed=None, str temperature_schedule="GEOMETRIC", bool log_history=False) | openjij.sampler.sa_sampler.SASampler | protected |
| _convert_validation_schedule(self, schedule) | openjij.sampler.sa_sampler.SASampler | protected |
| _default_params | openjij.sampler.sa_sampler.SASampler | protected |
| _make_system | openjij.sampler.sa_sampler.SASampler | protected |
| _params | openjij.sampler.sa_sampler.SASampler | protected |
| _sample_hubo_old(self, Union[dict, "openj.model.model.BinaryPolynomialModel", cimod.BinaryPolynomialModel] J, Optional[str] vartype=None, Optional[float] beta_min=None, Optional[float] beta_max=None, Optional[int] num_sweeps=None, Optional[int] num_reads=None, Optional[list] schedule=None, Optional[Union[list, dict]] initial_state=None, Optional[str] updater=None, Optional[bool] reinitialize_state=None, Optional[int] seed=None) | openjij.sampler.sa_sampler.SASampler | protected |
| index_list | openjij.sampler.sa_sampler.SASampler | |
| index_map | openjij.sampler.sa_sampler.SASampler | |
| num_variables | openjij.sampler.sa_sampler.SASampler | |
| parameters(self) | openjij.sampler.sa_sampler.SASampler | |
| sample(self, Union["openj.model.model.BinaryQuadraticModel", dimod.BinaryQuadraticModel] bqm, Optional[float] beta_min=None, Optional[float] beta_max=None, Optional[int] num_sweeps=None, Optional[int] num_reads=None, Optional[list] schedule=None, Optional[Union[list, dict]] initial_state=None, Optional[str] updater=None, Optional[bool] sparse=None, Optional[bool] reinitialize_state=None, Optional[int] seed=None) | openjij.sampler.sa_sampler.SASampler | |
| sample_hubo(self, dict[tuple, float] J, Optional[str] vartype=None, int num_sweeps=1000, int num_reads=1, int num_threads=1, Optional[float] beta_min=None, Optional[float] beta_max=None, str updater="METROPOLIS", str random_number_engine="XORSHIFT", Optional[int] seed=None, str temperature_schedule="GEOMETRIC") | openjij.sampler.sa_sampler.SASampler | |
| sample_huio(self, dict[tuple, float] J, dict[Any, tuple[int, int]] bound_list, int num_sweeps=1000, int num_reads=1, int num_threads=1, Optional[float] beta_min=None, Optional[float] beta_max=None, str updater="OPT_METROPOLIS", str random_number_engine="XORSHIFT", Optional[int] seed=None, str temperature_schedule="GEOMETRIC", bool log_history=False) | openjij.sampler.sa_sampler.SASampler | |
| sample_quio(self, dict[tuple, float] J, dict[Any, tuple[int, int]] bound_list, int num_sweeps=1000, int num_reads=1, int num_threads=1, Optional[float] beta_min=None, Optional[float] beta_max=None, str updater="OPT_METROPOLIS", str random_number_engine="XORSHIFT", Optional[int] seed=None, str temperature_schedule="GEOMETRIC", bool log_history=False) | openjij.sampler.sa_sampler.SASampler | |
| schedule_info | openjij.sampler.sa_sampler.SASampler |