jijzepttools.blackbox_optimization#
Submodules#
Classes#
Factorization Machine model |
|
Package Contents#
- class BOCSWorkflow(random_seed: int | None = None, coef_mean=True, flip_postprocess4uniq: bool = False)#
Bases:
jijzepttools.blackbox_optimization.workflow.BlackboxOptimizationWorkflow
- sbr#
- coef_mean = True#
- create_quadratic_terms(x: numpy.ndarray) numpy.ndarray #
- train(state)#
- generate_instance(state) tuple[dict, float] #
- run(x: numpy.ndarray, y: numpy.ndarray, blackbox_func: Callable, solver: Callable, n_iter: int, draws: int = 1, tune: int = 1)#
- class FactorizationMachine(n_features: int, latent_dim: int)#
Bases:
torch.nn.Module
Factorization Machine model
`math f(x|w, v) = w0 + Σwi*xi + ΣΣ<vj, vk>xj*xk = w0 + Σwi*xi + 1/2*(Σ(vi*xi)^2 - Σ(vi^2*xi^2)) `
- n_features#
- latent_dim#
- linear#
- quad#
- forward(x)#
- property v#
- property w#
- property w0#
- class FMTrainer(n_features: int, latent_dim: int, optimizer_params: dict | None = None)#
- model#
- fit(x_numpy: numpy.ndarray, y_numpy: numpy.ndarray, n_epochs: int)#
- predict(x: torch.Tensor) torch.Tensor #
- property x#
- property y#
- get_qubo() tuple[numpy.ndarray, float] #
- class FMOWorkflow(n_features, latent_dim, optimizer_params: dict | None = None, flip_postprocess4uniq: bool = False)#
Bases:
jijzepttools.blackbox_optimization.workflow.BlackboxOptimizationWorkflow
- fm_trainer#
- train(state)#
- generate_instance(state) tuple[numpy.ndarray, float] #
- run(x: numpy.ndarray, y: numpy.ndarray, blackbox_func: Callable, solver: Callable, n_iter: int, n_epochs: int)#
- class SparseBayesianLinearRegression(random_seed: int | None = None)#
- rs#
- fit(x: numpy.ndarray, y: numpy.ndarray, draws: int = 10, tune: int = 100)#
- class BlackboxOptimizationWorkflow(flip_postprocess4uniq: bool = False)#
- workflow#
- train(state: BlackboxState) None #
- generate_instance(state: BlackboxState)#
- solve(instance)#
- run_blackbox(state: BlackboxState, x)#
- flip_postprocess4uniq(state: BlackboxState, new_x: numpy.ndarray)#
- check_iter(state: BlackboxState)#
- run(x: numpy.ndarray, y: numpy.ndarray, blackbox_func: Callable, solver: Callable, n_iter: int, **params)#